Rad - ⊕ - Supplemented Modules
نویسنده
چکیده
In this paper we provide various properties of Rad-⊕-supplemented modules. In particular, we prove that a projective module M is Rad⊕-supplemented if and only if M is ⊕-supplemented, and then we show that a commutative ring R is an artinian serial ring if and only if every left R-module is Rad-⊕-supplemented. Moreover, every left R-module has the property (P ∗) if and only if R is an artinian serial ring and J = 0, where J is the Jacobson radical of R. Finally, we show that every Rad-supplemented module is Rad-⊕-supplemented over dedekind domains.
منابع مشابه
On Rad-H-supplemented Modules
Let M be a right R-module. We call M Rad-H-supplemented iffor each Y M there exists a direct summand D of M such that(Y + D)/D (Rad(M) + D)/D and (Y + D)/Y (Rad(M) + Y )/Y .It is shown that:(1) Let M = M1M2, where M1 is a fully invariant submodule of M.If M is Rad-H-supplemented, thenM1 andM2 are Rad-H-supplemented.(2) Let M = M1 M2 be a duo module and Rad--supplemented. IfM1 is radical M2-...
متن کاملOn Semilocal Modules and Rings
It is well-known that a ring R is semiperfect if and only if RR (or RR) is a supplemented module. Considering weak supplements instead of supplements we show that weakly supplemented modules M are semilocal (i.e., M/Rad(M) is semisimple) and that R is a semilocal ring if and only if RR (or RR) is weakly supplemented. In this context the notion of finite hollow dimension (or finite dual Goldie d...
متن کاملGeneralized lifting modules
We introduce the concepts of lifting modules and (quasi-)discrete modules relative to a given left module. We also introduce the notion of SSRS-modules. It is shown that (1) if M is an amply supplementedmodule and 0→N ′ →N →N ′′ → 0 an exact sequence, then M isN-lifting if and only if it isN ′-lifting andN ′′-lifting; (2) ifM is a Noetherianmodule, then M is lifting if and only if M is R-liftin...
متن کاملOplus-supplemented modules with respect to images of a fully invariant submodule
Lifting modules and their various generalizations as some main concepts in module theory have been studied and investigated extensively in recent decades. Some authors tried to present some homological aspects of lifting modules and -supplemented modules. In this work, we shall present a homological approach to -supplemented modules via fully invariant submodules. Lifting modules and H-suppleme...
متن کاملOn H-cofinitely supplemented modules
A module $M$ is called $emph{H}$-cofinitely supplemented if for every cofinite submodule $E$ (i.e. $M/E$ is finitely generated) of $M$ there exists a direct summand $D$ of $M$ such that $M = E + X$ holds if and only if $M = D + X$, for every submodule $X$ of $M$. In this paper we study factors, direct summands and direct sums of $emph{H}$-cofinitely supplemented modules. Let $M$ be an $emph{H}...
متن کامل